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Abstract—Hyper-reflective foci (HRF) refers to the spot-
shaped, block-shaped areas with characteristics of high
local contrast and high reflectivity, which is mostly ob-
served in retinal optical coherence tomography (OCT) im-
ages of patients with fundus diseases. HRF mainly appears
hard exudates (HE) and microglia (MG) clinically. Accurate
segmentation of HE and MG is essential to alleviate the
harm in retinal diseases. However, it is still a challenge to
segment HE and MG simultaneously due to similar patho-
logical features, various shapes and location distribution,
blurred boundaries, and small morphology dimensions. To
tackle these problems, in this paper, we propose a novel
global information fusion and dual decoder collaboration-
based network (GD-Net), which can segment HE and MG
in OCT images jointly. Specifically, to suppress the in-
terference of similar pathological features, a novel global
information fusion (GIF) module is proposed, which can
aggregate the global semantic information efficiently. To
further improve the segmentation performance, we design
a dual decoder collaborative workspace (DDCW) to com-
prehensively utilize the semantic correlation between HE
and MG while enhancing the mutual influence on them
by feedback alternately. To further optimize GD-Net, we
explore a joint loss function which integrates pixel-level
with image-level. The dataset of this study comes from
patients diagnosed with diabetic macular edema at the
department of ophthalmology, University Medical Center
Groningen, The Netherlands. Experimental results show
that our proposed method performs better than other state-
of-the-art methods, which suggests the effectiveness of the
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proposed method and provides research ideas for medical
applications.

Index Terms—Dual decoder collaborative workspace,
global information fusion module, hyper-reflective foci
(HRF), joint segmentation.

I. INTRODUCTION

O PTICAL coherence tomography (OCT) is a high-
resolution, non-contact, non-invasive biological tissue

imaging technology that performs tomographic imaging of the
anterior and posterior segments of the eye with micron resolution
[1]–[4]. It generates cross-sectional images of ocular biological
tissues including the macula and optic disc, which can reveal the
pathological changes in the fundus. Therefore, OCT is widely
used in the diagnosis and prognosis planning of ophthalmic
diseases [5], [6].

Hyper-reflective foci (HRF) refers to the spot-shaped and
block-shaped area with high local contrast and high reflectivity
in retinal OCT images. These small HRFs are mostly observed
in OCT images of patients with fundus diseases such as dia-
betic macular edema (DME), age-related macular degeneration
(AMD) and retinal vein occlusion (RVO) [7], that is to say, the
existence of HRF is related to the severity of various retinal dis-
eases [8], [9]. Several studies show that HRF mainly manifests
as hard exudates (HE) and microglia (MG) [7], [10]–[15].

HE usually shows as block-shaped HRF in retinal OCT im-
ages, which generally occurs in retinal vascular diseases, such as
diabetic retinopathy (DR), RVO, hypertensive retinopathy and
other retinal diseases. Previous studies have found that visual
acuity has a significant correlation with HE [16], [17].

MG originates from hematopoietic stem cells and is mainly
distributed in the inner retina [18], which is not visible on fundus
images but can be seen on OCT images as small spot-shaped
HRF. MG may be activated, proliferated, migrated and polarized
in the pathogenesis of DR. These changes may play an important
role in the occurrence and development of DR retinal neurode-
generation and microcirculation regulation disorders [19], [20],
[21]. At the same time, MG is also a clinical indicator of the
response to dexamethasone implant treatment in DME patients
[12].
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Fig. 1. Example of HE and MG in an OCT B-scan. (a) Unlabeled OCT
B-scan image with HE and MG, (b) Labeled OCT B-scan image with HE
and MG, the red marking is HE, and the green marking is MG.

A previous study showed that activated MG can be distin-
guished from HE by its diameter, reflectivity and shady states
[18]. HE mainly refers to HRF with an area larger than 1.6 ×
10³μm² and accompanied by a shadow area underneath. MG
mainly refers to HRF with an area larger than 4.0 × 10² μm²
and no shadow area. The highly reflective bright spot with an
area less than 4.0 × 10² μm² is considered to be noise generated
during photographing [12], [22]. An example of HE and MG is
shown in Fig. 1.

Previous clinical studies have used manual calculation of
selected OCT slices to study the HRF area [23]–[25], which
is usually time-consuming and leads to subjective bias in the
analysis. Therefore, the accurate and automatic joint segmenta-
tion of HE and MG is of great significance to ophthalmologic
clinical diagnosis.

There are some previous works which focused on the auto-
matic evaluation of HRF [8], [26]–[30]. Mokhtari et al. [31]
presented an automatic detection method using morphological
component analysis to detect HRF. Xie et al. [32] adopted an
adaptive threshold method to segment HRF in frequency domain
optical coherence tomography (SD-OCT) images. Okuwobi
et al. [33] proposed a method for segmenting and quantifying
HRF in SD-OCT images based on Grow-cut algorithm. Re-
cently, in [34], Okuwobi et al. segmented HRF by extracting
the retinal ROI area and extracting the extreme value area from
the connected area of the component tree at the same time,
followed by the combination of the two to get the result area.
These above methods were all based on traditional algorithms
with unsatisfactory segmentation accuracy of HE and MG.

Convolutional neural networks (CNNs) have achieved state-
of-the-art performance for automated medical image segmen-
tation in recent years. There are some previous CNNs-based
methods have been proposed for HE detection and segmentation

in fundus images [35]–[37] and OCT images [38]–[40]. Schlegl
et al. [38] proposed a method of adding a residual module in
U-Net to segment HRF in OCT images. Katona et al. [39]
used the deep neural networks (DNNs) for quantifying HRF and
AMD related biomarkers recognition in retinal OCT images. In
addition, Varga el.al [40] adopted several existing networks such
as deep rectifier neural networks (DRNs), fully convolutional
neural networks (FCN) to automatically segment HRF in OCT
images. However, their work mainly focuses on the preprocess-
ing of OCT images rather than the joint segmentation of HE and
MG.

In this paper, we propose a novel global information fusion
and dual decoder collaboration based network (GD-Net) for
the joint segmentation of HE and MG in retinal OCT images.
In which, a novel global information fusion (GIF) module is
proposed and embedded into the top layer of encoder, while a
novel dual decoder collaborative workspace (DDCW) with two
decoder branches is designed for the multi-class joint segmen-
tation task. Furthermore, a joint loss function is designed to
guide the optimization of GD-Net training. As far as we know,
this is the first study on joint segmentation of multi-class HRF.
Comprehensives experiments have been conducted to evaluate
the proposed GD-Net, and the results show that our proposed
method achieves better performance than other state-of-the-art
methods. The main contributions of this paper are as follows:

- We propose a novel global information fusion and dual
decoder collaboration based network (GD-Net) for HE and
MG joint segmentation task.

- To suppress the interference of similar pathological fea-
tures between HE and MG, a global information fusion
(GIF) module is designed.

- A novel dual decoder collaborative workspace (DDCW)
is explored, which can deal with problems caused by
morphological characteristics with the coordination of the
proposed joint loss function.

- Comprehensive experiments are conducted to evaluate the
performance of the proposed method, the experiments
results show that compared with other excellent CNN-
based method, our proposed GD-Net achieves the best
performance.

II. METHODS

A. Overview

Fig. 2 demonstrates the overview structure of the proposed
GD-Net, which consists of three main parts: feature encoder,
GIF module and DDCW.

The GIF module is inserted at the top of the encoder to
capture global context information, while DDCW replaces the
traditional single decoder structure with dual decoders to give
spaces for feature fusion and continuous information feedback.

B. Dual Decoder Collaborative Workspace

We use U-Net [41] as the baseline, however, the traditional
framework of U-Net always has unsatisfactory segmentation
when objects have small size and blurred boundaries. Inspired
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Fig. 2. The structure of our proposed GD-Net.

Fig. 3. The structure of Global Information Fusion (GIF) module.

by this problem, we propose a dual decoder collaborative
workspace (DDCW), which has two decoder branches.

In the workspace, Decoder II is designed as the main decoder
path while Decoder I is explored to play an auxiliary role,
whose output is the entire HRF. In Decoder Ⅰ, the regular skip-
connection is adopted, which is similar to U-Net. HE and MG
have a variety of shapes and location distribution in morphology,
resulting in difficulties in the fine segmentation.

To solve this problem, the pixel-level adder is introduced,
which completes the addition between the output of the corre-
sponding layer of Decoder I and the features from the encoder
part. The results of adder, which contain rich semantic infor-
mation, are fed into the concatenate operation in Decoder II.
Therefore, the Decoder II that used to segment HE and MG can
optimize its performance continuously under the feedback of
the Decoder I. In addition, with the coordination of the joint
loss function, two decoder branches interact with each other to
optimize performance efficiently.

C. Global Information Fusion Module

As has been discussed in the introduction, the similar patho-
logical features between HE and MG can interfere the joint
segmentation task. How to solve this and integrate information
effectively is a problem worth exploring. To deal with it, a novel
global information fusion (GIF) module is proposed. Fig. 3
shows the structure of the GIF module.

As illustrated in Fig. 3, the input feature map is denoted
as X�RC × H × W and fed into a convolution layer to gener-
ate two new feature maps B and D, respectively, where {B,
D}�RC × H × W, and the C, H, W represents the channels, height,
width, respectively. Then we reshape them to RC × N, where C
and N = H × W represents the number of feature maps and
number of pixels in each feature map, respectively. We further
generate the Info-fusion Map M�RN × N after performing ma-
trix multiplication between the transpose of B and D followed
by softmax operation. Specifically, each position mij of M is
denoted as:

mij =
eBj•Di∑
N
j=1e

Bj•Di
(1)

where mij measures the impact of the ith position on the jth posi-
tion. After integrating the information of each location in turn,
M covers the global features. The larger value of mij contributes
greater correlation between the two positions. We refer M as
the map positively correlated with the feature. The more similar
feature representations of the two position contributes to greater
correlation between them. Therefore, 1-M is the map negatively
correlated with the feature, where 1 is a matrix with the same size
as M and all values of 1. M extracts the information belonging
to the same category, while 1-M focuses on the information of
different classes.

At the same time, we feed feature X into a convolution layer
to generate another two new feature maps A and E, respectively,
where {A, E}�RC × H × W and reshape them to RC × N. After
performing matrix multiplication between the transpose of M
and E, and the transpose of 1-M and A, the results denoted as
Y1 and Y2 are obtained, which contain positive and negative
correlation features, respectively.

Y1 =
∑

N
j=1 (mij • Ej) (2)

Y2 =
∑

N
j=1 [(1−mij) •Aj ] (3)

According to the correlation between the same categories,
Y1 further reinforces the interdependencies between features.
Meanwhile, Y2 highlights the differences in different categories
and captures the missing information from the negative correla-
tion map. After reshaping, concatenation operation is done on
Y1 and Y2. The result is fed into a convolutional layer to generate
a new feature map F.

Fi = Conv [Concat (Y1, Y2)] (4)

It can be inferred from Eq. (4) that through the feature fusion
of two dimensions, positive correlation and negative correlation,
we can infer the semantic relevance between pixels under each
correlation. Therefore, the obtained information suppresses the
interference of similar pathological features on segmentation
performance. Finally, we multiply F by a scale parameter β and
perform an element-wise summation operation with feature X to
obtain the final output G�RC × H × W. The procedure of the GIF
module can be represented as follows:

Gi = β • Fi +Xi (5)

where β is learnable weight and initialized as 0.
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From Eq. (5), the resulting feature G at each position is a
weighted sum of the features across all positions and original
features, which has a global contextual view. The output of the
GIF module is shown in Eq. (5), which is used as the input of
Decoder II.

D. Joint Loss Function

A main challenge in joint segmentation is class distribution
imbalance. In order to optimize our model further, we employ
a joint loss function to guide the optimization of the proposed
GD-Net.

For the HRF segmentation in Decoder I, the binary cross-
entropy loss and the dice loss function [42] are adopted to jointly
optimize the branch:

LHRF = LBCE + LDice (6)

LBCE = −
∑

h,w

[
(1− y) • log (1− ŷ)h,w + y • log (ŷ)

]

(7)

LDice = 1− 2 (y • ŷ)
sum (y) + sum (ŷ)

(8)

where y and ŷ represent the ground truth and the corresponding
HRF segmentation results, (w, h) is the coordinates of the pixel.

For the joint segmentation of HE and MG, to reduce the in-
terference of background information and improve the accuracy
of lesions segmentation, multi-category cross entropy loss and
foreground Dice loss function are jointly adopted to optimize
the other branch:

LJoint = LMCE + LF−Dice (9)

LMCE = −
∑N

C=1

∑
h,w[

(1− vc) • log (1− v̂c)
h,w+ vc • log (v̂c)

]
(10)

LF−Dice = 1− 1

N

∑N

C=1

2 (vc • v̂c)
sum (vc) + sum (v̂c)

(11)

where C indicates the class being evaluated and N is the total
number of classes segmented, which is 2 in this paper. v1 and v̂1
represent the ground truth and the segmentation results for HE,
and v2 and v̂2 represent the ground truth and the segmentation
results for MG.

The total joint loss function is as follows:

LTotal = α • LJoint + (1− α) • LHRF (12)

where α is the loss weight of HE and MG joint segmentation
task with a value less than 1. The value of α is finally set to 0.4
in this paper, and subsequent experiments will also verify it.

From Eq. (7) and (10), it can be seen that the cross-entropy
loss function is mainly based on pixel-level pixel classification
to guide the network to focus on the local information of the
image. As shown in Eq. (8) and (11), the Dice loss function is
mainly used to guide network optimization based on image-level
errors and pay more attention to the global features of the
lesions. It should be noted that the proportion of HE and MG
lesions in OCT images is very small. In order to strengthen

TABLE I
DATASET USED FOR FOUR-FOLD CROSS VALIDATION IN THIS STUDY

the supervision of the target area segmentation and reduce
the interference of background information, the background
Dice loss is ignored when training the model. The foreground
Dice guidance of the lesion area segmentation is adopted, while
the background segmentation loss is mainly guided by the pixel-
level cross-entropy loss. Therefore, the total joint loss function
Eq. (12) can not only ensure the accuracy and continuity of
the lesions segmentation, but also reduce the influence of the
background and reducing false positives.

III. EXPERIMENTS AND RESULTS

A. Dataset

Seven retinal OCT scans from seven patients diagnosed with
DME at the department of ophthalmology, University Medical
Center Groningen, The Netherlands were included in this study.
OCT files with poor quality evaluated by Canon OCT built-in
software with a score of Image Quality < 4 were excluded. All
patients underwent examination with the Canon OCT-HS100
device (version 4.4.0.13) using the Macula 3D mode. The OCT
scanning area was 10 × 10 × 2 mm3 centered on the fovea,
corresponding to 128 × 1024 × 1176 pixels. This study adhered
to the tenets of Declaration of Helsinki and was approved by
the Medical Ethics Review Board of University Medical Center
Groningen, The Netherlands (METc number: METc2019/599).
Informed consents were obtained from each patient.

Manual labeling of HRF B-scans was performed by a senior
ophthalmologist using ITK-SNAP software (version 3.4.0) [43].
Two types of HRF, HE and activated MG, were identified and
labelled separately with different colors. Specifically, HE was
defined as particles larger than 40 μm with back shadowing
and reflectivity similar to the retinal pigment epithelium-Bruch
complex24. Activated MG was defined as particles 20 to 40 μm
in diameter with similar reflectivity to the nerve fiber layer
without back shadowing on OCT. Signals smaller than 20 μm
were regarded as noise and excluded.

Based on above data rules, 202 valid B-scan images are
selected to establish the joint segmentation dataset. Meanwhile,
a four-fold cross validation strategy is performed to objectively
validate the performance of the proposed method. The training
set and testing set of four-fold are shown in the Table I, which
are divided according to patients.

For each fold, 100 epochs are trained. We resize the images
from 1024 × 1176 to 1024 × 1024. Considering that the lesions
are small and have blurred boundaries and uneven distribution
(some lesions are located at the border of the image), we did not
use any affine transformation and Gaussian noise addition for
data augmentation, but only used flipping.

Authorized licensed use limited to: Soochow University. Downloaded on April 02,2022 at 07:50:20 UTC from IEEE Xplore.  Restrictions apply. 



YAO et al.: JOINT SEGMENTATION OF MULTI-CLASS HRF IN RETINAL OCT IMAGES 1353

TABLE II
SEGMENTATION RESULTS OF HE, MG AND THEIR MEAN VALUES IN THE CONTRAST EXPERIMENTS OF DIFFERENT NETWORKS (MEAN ± STANDARD

DEVIATION)

B. Evaluation Metrics

In order to evaluate the performance of the proposed GD-Net
objectively, the metrics shown in Eq. (13), (14), (15), (16) are
adopted.

DSC =
2TP

2TP + FP + FN
(13)

IoU =
TP

TP + FP + FN
(14)

Recall =
TP

TP + FN
(15)

Precision =
TP

TP + FP
(16)

where TP, FP, TN and FN represent true positive, false positive,
true negative and false negative, respectively. Dice similarity
coefficient (DSC) can be used to compare the similarity between
ground truth and results [5], [44]. Intersection over union (IoU),
also known as Jaccard index, is the main measure of overlap
between ground truth and segmentation results [45]. Moreover,
DSC and IoU are the main evaluation metrics in experiments. In
addition, since automatic joint segmentation of lesions is used
to assist doctors in diagnosing and analyzing retinal diseases,
recall and precision are also included in our comprehensive
experiments [46].

C. Implementation Details

The implementation of the proposed GD-Net is based on the
public platform PyTorch and NVIDIA GeForce 3090 GPU with
24GB memory. In the joint training process, the Poly strategy is
used to set the initial learning rate to 1e-4. The learning rate of the
entire joint learning stage is 5e-4, and the optimizer is Adam. The
Batch size is set as 2. Moreover, the code of the proposed GD-Net
will be released in: https://github.com/cpyao20/GD-Net.

D. Comparison to Other State-of-the-Art Deep Learning
Based Networks

In this section, we compare our proposed GD-Net with other
state-of-the-art segmentation networks, such as CE-Net [47],
DeepLab [48], PSPNet [49], CPFNet [50], U-Net [41], U-
Net++ [51] and Att U-Net [52]. We calculate the metrics of HE
and MG and their mean values respectively and the comparison
results for all methods are listed in Table II.

It can be seen from Table II that the proposed GD-Net out-
performs almost all state-of-the-art methods. Although U-Net
performs well when compared with several other networks,
the main evaluation metrics, DSC and IoU of GD-Net, are
improved by 1.60%, 2.36% on HE and 7.23%, 10.49% on MG
respectively. Compared with PSPNet, which achieves the worst
results with 68.71% and 39.80% for DSC, the metrics of our
method achieve a remarkable improvement and reach 73.47%
and 52.06% respectively. Moreover, compared with U-Net++,
which achieves the second best Recall on MG, our proposed
GD-Net is improved by 3.17%, which indicates that our method
can detect small targets precisely.

It also can be seen from Table II that our proposed method
achieves best segmentation results on mean values of all metrics,
especially for DSC and IoU. Besides, compared with the excel-
lent U-Net, the evaluation metrics of the GD-Net are increased
by 2.47%, 3.45%, 2.57%, and 1.73% in DSC, IoU, Recall and
Precision, respectively.

An example of segmentation results with different methods is
shown in Fig. 4 and from which it can be seen that our proposed
method achieves best segmentation results. Compared with other
state-of-the-art methods, our proposed method can not only
accurately segment the lesion with small sizes, but also maintain
good regional continuity in segmenting large targets. These
results further demonstrate the effectiveness of the proposed
method.

Meanwhile, to further investigate the statistical significance
of the performance improvement by the proposed GD-Net over
other state-of-the-art segmentation networks, we conduct T-test

Authorized licensed use limited to: Soochow University. Downloaded on April 02,2022 at 07:50:20 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/cpyao20/GD-Net


1354 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 69, NO. 4, APRIL 2022

Fig. 4. Segmentation examples of HE and MG with different networks. The red and green regions represent HE and MG, respectively.

Fig. 5. Segmentation example of U-Net and threshold method. (a) OCT B-scan image. (b) The ground truth. (c) U-Net’s multi-class segmentation
result (HE, MG). (d) Threshold method’s segmentation result (HE, MG).

TABLE III
STATISTICAL ANALYSIS (P-VALUE) OF THE PROPOSED GD-NET VERSE

OTHER STATE-OF-THE-ART SEGMENTATION NETWORKS

and the p-values are listed in Table III. As can be observed in
Table III, all of the DSC and IoU improvement on mean values
are statistically significant with p-values less than 0.05, which
further demonstrates the effectiveness of the proposed GD-Net.

E. Comparison of Threshold Method

Threshold has been used in many previous researches on
image segmentation and HRF detection [32], [53], [54]. In this
section, therefore, we compare the convolutional neural net-
work method with the traditional threshold method. We perform
experiments on U-Net, which have achieved the second best
performance in comparison experiments.

We use a U-Net to segment the entire HRF, and then dif-
ferentiate it by applying a threshold on dimensions of the seg-
mented objects. After several trials, we set the optimal threshold,
63 pixels, as the basis for segmentation. If the size is larger
than 63 pixels, it will be classified as HE, while those with a
size smaller than 63 pixels are classified as MG. The results
are compared with those obtained by using U-Net directly for
multi-class segmentation, which is shown in Table IV and Fig. 5.

It can be seen from Table IV that the calculation results
of U-Net on all metrics perform better, which indicates the
better effectiveness and practicability of CNN method. From the
comparison of Fig. 5(c) and (d), we can clearly see the difference
between the results of U-Net and the threshold method. The
areas marked by the white box in (d) are the areas that have
been erroneously segmented.

F. Comparison of Model Variations

The U-Net is used as the baseline of this experiment. We
conduct ablation experiments and calculate the metrics of HE
and MG and their mean values respectively.

Ablation experiment for GIF module: As shown in Table V, an
ablation experiment is conducted to evaluate the proposed GIF
module. Compared with the baseline model, our Baseline+GIF
achieves improvement in main evaluation metrics of MG (1.44%
for DSC, 1.74% for IoU and 5.71% for Recall), which benefits
from the fact that GIF module can aggregate the high-level
comprehensive semantic information and capture the missing in-
formation from the negative correlation map to improve the per-
formance on small targets. Moreover, Baseline+GIF achieves
remarkable performance on Recall, which proves the effective-
ness of the proposed module.

Ablation experiment for DDCW: We also conduct experiment
to demonstrate the effectiveness of our proposed DDCW. It
can be seen from Table V that, compared with the baseline,
Baseline+DDCW achieves higher metrics in all four evaluation
metrics except the Precision of MG and mean values. Especially,
compared with the Baseline, the main evaluation metrics, DSC
and IoU of Baseline+DDCW, are improved by 2.22% and 3.51%
and reaches 61.77% and 47.49% on mean values, respectively.
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TABLE IV
SEGMENTATION RESULTS OF HE, MG AND THEIR MEAN VALUES OF U-NET AND THRESHOLD METHOD (MEAN ± STANDARD DEVIATION)

TABLE V
SEGMENTATION RESULTS OF HE, MG AND THEIR MEAN VALUES IN THE ABLATION EXPERIMENTS OF MODEL VARIATIONS (MEAN ± STANDARD DEVIATION)

Fig. 6. Segmentation examples of HE and MG with model variations. The red and green regions represent HE and MG, respectively.

Ablation experiment for different parameter α: We conduct
experiments on GD-Net (Baseline+GIF+DDCW) with differ-
ent parameter α, where α is the loss weight of multi-class joint
segmentation task with a value less than 1, as shown in Eq. (12).
Plenty of experiments are conducted and we choose four sets
of data with good performance, as shown in Table V. GD-Net
achieves the best performance on DSC, IoU and Precision when
α = 0.4. Although GD-Net performs well when α = 0.2, 0.5,
0.7, compared with the second best result, Mean DSC and Mean
IoU are improved by 0.77% and 1.21% respectively when α =
0.4. These results indicate that the suitable parameter can keep
better balance with the proportion of pixel-level and image-level,
which can improve the performance of the network.

An example of segmentation results with models variations is
shown in Fig. 6. It can be seen from it that the proposed GD-Net
can preserve the structure of HE and MG more completely and

present more details, which effectively improves the accuracy
of segmentation and reduces false positives. It is also obvious
that GD-Net is closer to GT when α = 0.4, which meets the
medical accuracy requirements for HE and MG segmentation
tasks.

G. Inter- and Intra- observer Error

To further demonstrate the research significance of this study
and the reliability of proposed algorithm, we conduct experi-
ments to report the inter- or intra- observer error and compare it
to the results of the algorithm.

Ground truth in original dataset is abbreviated as GT. In addi-
tion, we invite another senior ophthalmologist to manually mark
the HRF B-scans twice, which are named as GT_Dr.2_1 and
GT_Dr.2_2 respectively. The inter-observer error is verified on
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TABLE VI
THE RESULTS OF PROPOSED ALGORITHM AND INTER- AND INTRA- OBSERVER ERROR (MEAN ± STANDARD DEVIATION)

Fig. 7. Col. (a), from top to bottom are original B-scan, the B-scan added 30 dB and 60 dB Gaussian noise respectively. Col. (b), the segmentation
results of the proposed network with different levels of noise. Col. (c), the segmentation results of U-Net with different levels of noise.

GT and GT_Dr.2_1, while the intra-observer error is verified on
GT_Dr.2_1 and GT_Dr.2_2. The results are shown in Table VI.

Table VI shows the comparison between the three sets of data.
Our analysis is based on the main evaluation metrics, DSC. The
inter-observer error is 61.04%, which is lower than the proposed
algorithm in mean values and indicates that our method has quite
good reliability. The intra-observer error is slightly higher than
the proposed algorithm, which is 64.99%. This result also shows
that this segmentation task is fairly challenging. It is especially
worth noting that the proposed algorithm has achieved excellent
results on HE, but the performance on MG is slightly worse
than the ophthalmologist’s manual marking and needs to be
improved.

H. Comparison of Different Levels of Noise

The OCT B-scans used for the network training were collected
by Canon OCT-HS100 with Macula 3D mode and they were not
preprocessed with noise reduction. As mentioned above, con-
sidering that the lesions are small and have blurred boundaries
and uneven distribution, we do not use Gaussian noise addition
for data augmentation in the training stage. However, to report

the level of persistence of the proposed algorithm, the discussion
about the effect of noise is necessary. In the test stage, we add
30 dB and 60 dB Gaussian noise to OCT B-scans respectively to
evaluate the proposed network and U-Net, which has achieved
the second best performance in comparison experiments. An
example of segmentation results is shown in Fig. 7.

It can be seen from Fig. 7 that adding different levels of
noise makes the performance of the proposed algorithm and
U-Net worse. After analysis, we believe that the extra semantic
information of the lesions may be interfered by noise.

IV. CONCLUSION AND DISCUSSIONS

In this paper, we propose a novel GD-Net combined two
newly proposed modules of global information fusion (GIF)
and dual decoder collaborative workspace (DDCW) for joint
segmentation of HE and MG in retinal OCT images, which
mainly focuses on solving two problems: (1) the interferences
caused by similar pathological features between HE and MG.
(2) the difficulties in joint segmentation resulted from a va-
riety of shapes and location distribution, blurred boundaries,
small size in morphology. To the best of our knowledge, it
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is the first work to explore the joint segmentation of HE and
MG in retinal OCT images. Comprehensive experiments have
been conducted to evaluate the effectiveness of the proposed
method. The experimental results show that compared with other
state-of-the-art algorithms, the segmentation performance of our
proposed GD-Net has been improved obviously.

There are still some limitations on this study: (1) All compar-
ison algorithms and the proposed GD-Net has been trained and
evaluated based on small-scale dataset. (2) No noise has been
added to the OCT B-scans used for the network training. Al-
though the proposed GD-Net has achieved better performance,
we believe that if more quality data can be collected and different
levels of noise can be supported, the performance of the proposed
network will be further improved. Therefore, improving the level
of persistence of the algorithm to the level of speckle noise will
definitely be the focus of our follow-up work. It is also one of
our future works to collect more data, with further evaluation
and extension of our proposed module and network.
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